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Abstract. We present ageneral method to calculate the connected correlation function of random 
lsing chains ar zero tempemure. ?'his quantity is shown to relate to the survival probability 
of some one-dimensional, adsorbing random wallrer on a finite interval, the si% of which is 
contmlled by the strength of the randomness. The correlation length is exactly calculated for 
different random field and random bond distributions. 

1. Introduction 

A perfect crystal is a physical abstraction; in real materials one should always expect 
impurities and different types of lattice defects. There are important problems in the field of 
random systems, such as localization in a disordered medium, spin-glass behaviour, diluted 
magnets etc. In order to obtain a theoretical understanding of these phenomena, magnetic 
models with quenched disorder have been introduced and studied by different methods 
(for recent reviews, see [ 1-31). Random magnetic models have unusual low-temperature 
properties. These are a consequence of the complex structure of low-energy metastable 
states generated by quenched disorder and frustration, which 8re believed to be the main 
ingredients of spin-glass behaviour [4]. The simplest system in this field is the random 
Ising model, which can be experimentally realized as diluted antiferromagnet [SI. Already 
the one-dimensional model shows interesting features, although its physical quantities are 
only singular at zero temperature. 

Despite its low dimension, the onedimensional random Ising model is exactly solvable 
only for several specific types of randomness. One of these is the random-bond king chain 
in a uniform field (RBIM) defined by the Hamiltonian 

Here ui = 51, the exchange integral J;,i+l is equal to J > 0 with probability p and to -J  
with probability q = 1 - p .  and the bond disorder is quenched. For this model the ground 
state energy, the zero point entropy and the magnetization have been calculated by Demda 
and co-workers [6] (see also in [7]). 

Another type of random system is the ferromagnetic Ising model in a random field 
(RFIM) with the Hamiltonian 

t Permanent and present address. 
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At T = 0 the thermodynamic properties of this model have been calculated for the binary 
distribution of the random fields [6], 

(3) 

(4) 
The first exact results at T # 0 have been obtained by Grinstein and Mukamel 191 with the 
diluted symmetric binary distribution, 

(5) 
in the limit H --t CO. Very recently the nonlinear and higher-order susceptibilities of the 
model have also been determined [lo]. 

A series of RFIMs with continuous random field distribution has been studied by Luck 
and Nieuwenhuizen [Il-131 at arbitrary temperatures. One of these models is characterized 
by the diluted symmetric exponential distribution R ( x )  dx as 

(6) 

P ( h )  = pS(h - H )  + q m  + H )  
as well as for the asymmetric binary distribution [SI: 

P(h)  = $(h - HI - Ho) + fS(h + HI - Ho). 

P(h)  = i p [ S ( h  - H) + S(h + H)] + qS(h) 

R ( x )  = %-x + @ ( x )  
2 

with hi = # x i ,  # > Oand -CO < x i %  CO. 
As far as the correlation functions of random king models are concerned, few results 

are available. Derrida [I41 has pointed out that the spin-spin correlation function is not 
a self-averaging quantity, therefore its average differs from the most probable value [15]. 
Exact results in the entire temperature range are available for the Grinstein-Mukamel model 
[9], as well as for the diluted symmetric exponential distribution in equation (6) [12]. Most 

.recently Farhi and Gutmann [16] calculated the zero-temperature correlation function of 
RFIM with the binary distribution in equation (3). We should also mention a related exact 
study of the pair-correlation function of a one-dimensional lattice gas model in a random 
potential at zero temperature [17]. 

In this paper we study the connected correlation function of random king chains defined 
as 

(7) 
where (. . .) denotes the thermodynamic average and [. . .I,, stands for the quenched average 
over random variables. The thermodynamic average in equation (7) could be non-zero 
even at T = 0, provided the ground state of the system is highly degenerate. This can be 
seen in two-dimensional frustrated models without randomness, in which zero-temperature 
correlations decay either as a power law L18-211 or exponentially [22]. 

For random king chains the correlation function in equation (7) is usually calculated in 
the transfer matrix formalism 19,121. At T = 0, however, one may use another approach 
based on an analysis of the degenerate ground-state configurations. For a given quenched 
disorder, owing to frustration, there are spins in the system which are ‘loose’, i.e. they 
are free to point in any direction. These loose spins may form a domain, the connected 
correlation function being non-zero, but only if both spins considered belong to the same 
domain of loose spins. At this point a calculation of the correlation function at T = 0 is 
essentially reduced to an investigation of the size distribution of domains of loose spins, 
which in turn is equivalent to a one-dimensional random walker problem on a finite interval. 

The setup of the paper is as follows. In section 2 we present our method to calculate 
the connected correlation function for random king chains at T = 0. In sections 3 and 4 
correlation lengths are calculated for RFIM and RBIM, respectively. Finally, the results are 
discussed in section 5. 

X U )  = [(cici+t) - (ci)(ci+/)Iav 
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2. Connected correlations and their relation to random walkers 

In this section we develop a formalism to calculate the connected correlation function for 
random field king models at T = 0. It will be shown in Section 4 how these results can 
be applied for the random-bond problem. 

The random fields we consider have a discrete distribution. Furthermore, the possible 
values of hi are integer multiples of a unit, denoted by H, i.e. hi = m x H. For the 
binary distribution in equation (3), m = f l ,  while for the diluted symmetric distribution in 
equation (5) we have m = 0, fl. Continuous distributions, like that in equation (6). can 
also be discretized (an example is shown in section 3.3). In this way one can also treat the 
asymmetric binary distribution in equation (4). provided the ratio of the parameters HI and 
Ho is rational. 

The structure of groundstate configurations of a RRM with discrete randomness is 
thoroughly analysed in the literature (see e.g. in [2,31). In the weak-coupling limit, when 
25 c min{lhil} = h ~ n ,  the spins are frozen in the direction of the local fields. For stronger 
couplings (2J h ~ " ) ,  neighbouring spins tend to align parallel to each other, so that 
domains of parallel spins are formed. With stronger coupling, the average size of a domain 
increases but the ground state never consists of one single domain. It can be explained by 
pointing out that the energy 25 necessary to create a domain wall can be accumulated from 
fluctuations of the random field, even if the local field is arbitrarily small. 

The scale of random field fluctuations is characterized by the integrated random field 
function defined as H ( k )  = E;=, hi. As an illustration, we draw this function on figure 1 for 
a given random field distribution, together with the corresponding ground-state configuration 
of the system at some value of the coupling J. As we see on this figure, the first domain 
wall is located between spins 3 and 4, at a local maximum of H ( k ) .  Indeed, the sum of 
random field energies H(6) - N ( 3 )  e -2J covers the cost of creating a domain wall. 

5 10 15 

Figure 1. The integrated random field function H ( i )  for some fixed values of the random field. 
The corresponding ground state of the system at a given value of the coupling J is indicated 
below. Here vertical dashed lines denote the possible domain wall positions. State of spins in 
the region (7. 11) is not fixed, they form a DLS (see text). 

The position of the second domain wall is not unique, however: it can be at any of the 
three degenerate local minima located at (6,7), (9.10) or (11, 12). Energetically there is 
no difference between these configurations, since the corresponding random-field energies 
are the same: H(6) = H(9) = H(11). As a consequence in the interval (7, 11) the position 
of the spins in the ground state is not fixed. Such a region will be referred to as a domain 
of 'loose' spins (DLS). 
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Based on this example, we can easily postulate the properties of a DLS. First let us 
restrict ourselves to a DLS which separates a .1 . . . J. and a t . . . t domain, as shown in  our 
example in figure 1. Such a DLS is bounded by two degenerate local minima. Inside the DLS 
the integrated random field function relative to its value at the boundaries, AX&),  does not 
exceed 23;  thus the energy necessary to create a domain wall cannot be accumulated from 
the random field. On the other hand, in both directions outside the DLS, AH(k)  exceeds 
2 3  before reaching zero. This last condition ensures the existence of J. . . . .1 and t . . . T 
ferromagnetic domains at two sides of the DLS. 

The other type of DLS separating t . . . t and .1 . . . .1 domains can be characterized 
similarly. In this case, after the transformation ui --f -q, hi + -hi, the previous 
considerations can be extended to -H(k) .  Note that if 2 J / H  is an integer, the degeneracy 
of the ground state is higher than for a slightly larger or slightly smaller value of the 
coupling. It is connected to the fact that the conditions both for a T.1 and for a .It DLS can 
be satisfied in this case at the same time. In what follows we are not going to deal with 
such situations, so that our analysis applies for 2 J j H  # integer. 

Since the position of spins in a DLS is not fixed, these regions are the source of non- 
zero ground-state entropy in a RFIM. These regions are also responsible for a non-vanishing 
value of the connected correlation functions at T = 0. It is easy to see that the thermal 
averaging of x (1) in equation (7), which is now performed over the degenerate ground-state 
configurations, is non-zero only if the two spins are in the same DLS. If one spin is in a 
ferromagnetic domain, its value is the same for all ground-state configurations; consequently, 
the connected correlations are zero. On the other hand, if two spins are in different DLS 
they are independent variables, so that again the connected correlations vanish. 

The above relationship between x ( l )  and DLS makes it possible to calculate the leading 
'behaviour of the connected correlation function in a RFIM in a simple way. To do this one 
should (i) first consider DLS regions of length i > I and determine the probability W(j )  
that a point of the line belongs to one of these DIS, (ii) find the probability that the other 
reference point of x(I )  is also on the same DLS and finally (iii) calculate the thermal and 
quenched averages in equation (7) with the condition that both endpoints of x ( I )  are on the 
same DLS. In what follows we show that the leading behaviour of x ( I )  is determined by 
the probability W(l) ,  which has an exponential dependence on 1, whereas the probabilities 
indicated in (ii) and (iii) are comparatively negligible, because of the power-law dependence 
on 1 .  

To calculate the probability W(i) one can use a geometrical interpretation of a DLS as 
a onedimensional random walker with steps h i / H  on an interval consisting of 

L =  - f l  [:I 
points. Here [XI denotes the integer part of a non-integer x .  The walker starts at one 
endpoint of the interval and after f steps made on the strip returns to the same endpoint. 
For large i the leading behaviour of W ( f )  is exponential, and W ( i )  corresponds to the 
survival probability of the adsorbing random walker: 

L , 
We show next that the probabilities mentioned in (ii) and (iii) have weaker I dependence 

on 1 than the survivial probability. It is clear from a simple geometrical consideration that 
the probability in (ii) is at most * 1/1. On the other hand, to estimate the conditional 
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probability in (iii) one should first note that different ground states are characterized by one 
parameter, namely the position of the domain wall. Thus an average over this parameter 
is equivalent to the thermal end quenched averages in equation (7). Using the fact that the 
number of possible positions of a domain wall in a DLS of length 1 is proportional to 1. one 
can estimate the conditional probability in (iii) as - l-'. 

The connected correlation function ~ ( 1 )  is then obtained by summing the probabilities 
for f > 1 with the following result in leading order: 

x ( 0  - ~ ( 2 )  - exp [ - [ I~ (L) ]  (10) 

where L is given in equation (8). In the next section the correlation length <(L) will be 
calculated for different random-field distributions. 

3. Random field Jsing models 

The survival probability in equation (10) can be most easily calculated in the transfer 
matrix formalism [23]. In this formalism the elements of the transfer matrix T(n ,  m), 
n, ?i~ = 1, 2, ..., L ,  are given as~the probability of a step from a position m to n. In the RFlM 
language, T(n, m) = P(h(n. m)), where h(n, m) = (n - m) x H .  A matrix element of T 
is zero whenever the corresponding h(n, m )  is not contained in the set of random fields of 
the model. The leading eigenvalue of the transfer mahix, W), is connected to the survival 
probability as 

W(2) - h(L)'. (11) 

The correlation length in equation (10) is thus given by 

1 
<(L)  = -- 

logk(L)' 

For a general m M ,  simple analytical results can be obtained for 2 J I H  c 1 and in the 
strong-coupling limit 2 J I H  >> 1. In the former case L = 1, the interval of the walker 
consists of a single point: 

h(1) = P(0) 2 J / H  c 1. (13) 

Therefore, non-vanishing correlations can only be present in diluted models (see e.g. 
equations (5) and (6)). In the strong-coupling limit, which corresponds to L >> 1, we 
consider distributions with zero average (h i )  = 0. Then the finite-size corrections to the 
leading eigenvalue are quadratic, 

1 - h(L)  - L-' - (HIJ)' H / J  << 1 (14) 

which follows from the Gaussian nature of the free random walk 1231. According to 
equations (12) and (14), 

f ( J / H )  - (JIH)'  J I H  >> 1. (15) 

For intermediate (non-integer) values of 2 J / H ,  the leading eigenvalue of the transfer matrix 
can be calculated numerically, so that in principle one can obtain the correlation length 
of connected correlations for all types of WMs, together with the asymptotic relation in 
equations (15). In the following we present three examples, in which the calculation can 
be performed analytically for all non-integer values of 2 J / H .  
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3.1. Binary distribution 

The transfer matrix corresponding to the distribution in equation (3) is tridiagonal and given 

The (non-normalized) leading right eigenvector of this mamx is 

and the corresponding leading eigenvalue is 

The correlation length is then can be obtaine 
agrees with that of [161. 

)m qua ns j12) an 3). %is result 

3.2. Diluted symmetric binary distribution 

The transfer matrix corresponding to the distribution in equation (5) is symmetric and 
tridiagonal: 

4 
Pf2 

E =  [ PI2 

PI2 4 
4 PI2 

PI2 

PI2 

The leading eigenvector of Tz is the same as in equation (17), but q /p  = 1 and the leading 
eigenvalue is given by 

For L = 1, i.e. for 2 J I H  c 1, Az(1) = q and the general relation in equation (13) is 
recovered, which also agrees with the result of Grinstein and Mukamel [PI for 2 J I H  4 0. 
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3.3. Diluted symmetric exponential distribution 

We consider the discretized version of the distribution in equation (6) when the allowed 
values of the random field are hi = H x i, i = 0, f l .  k 2 ,  ... and the probability distribution 
is given by 

P ( h ) = c e x p ( - a ~ ~ ~ ) S ( h - H i l + c o S ( h ) .  (21) 

Here or z 0 and the distribution is normalized with c = p/2(expor - l), cg = q - c and 
p + q = 1. Taking the limit 

or 3 o+ H -+ o rl = H/(expor- 1) =finite (22) 

one arrives at a continuum description in the variables hi = gx:, --CO c xi c CO, with the 
probability distribution R(x)dx given by equation (6). 

We write the transfer matrix of the problem in terms of the variables o = exp(-or), 
00 = q and K = c /q  as 

We mention that the same transfer matrix belongs to a directed polymer [23] on a strip of 
width L on the square lattice. In this case wo and w are the monomer fugacities for steps 
along and perpendicularly to the strip, respectively, and K denotes the statistical weight 
corresponding to a bend of the chain by 90". 

in equation (23) is similar to that of the unrestricted 
directed polymer [24]. The leading eigenvector is given by 

The eigenvalue problem of 

where @ is the smallest root of the equation 

The leading eigenvalue is then 

The correlation length can be obtained from equation (12) using the correspondences 
between w, W. K and the original parameters of the distribution in equation (21). 

Now we evaluate our results in equations (25) and (26) in the continuum limit of 
equation (ZZ), which reads as w + 1-. The smallest root of equation (25) is proportional 
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to 1 - w,  so that writing it in the form 4 = y(1 - o) one derives the following relation 
from equation (25): 

J 
tan-' (;) = ?p' 

Then the leading eigenvalue in the continuum limit is given by 

These results are identical to those obtained by Luck and Nieuwenhuizen [ 121 using the 
continuous distribution in equation (6) and taking the non-trivial limit T -+ O+. We note 
that the correlation function calculated with the continuous distribution is discontinuous at 
T = 0, so that the limits H -+ 0 and T -+ 0 can not be interchanged. 

4. Random-bond Ising model 

The formalism developed in section 2 can also be applied to calculate x ( I )  for the RBlM with 
the Hamiltonian in equation (1). It is easy to see that after the transformation q + q h / h i  
in equation (2) one arrives at a RBIM with Ji,i+l = J/hihi+l. The inverse transformation 
'is given by 

i-I 

so that random fields can be expressed via random bonds as 

The random fields in equation (30) can assume the values *h, like the binary distribution 
in equation (3); however, these his are correlated in different sites, since 

(hihi+") = ( P  -4)". (31) 

Thus the symmetric distribution with p = q = 112 is exceptional, in which case the RBM 
is equivalent to the FSM with the symmetric binary distribution of equation (3). 

For p # q the probability is connected to bond variables, thus to the sign of the product 
of two consecutive random fields: 

To write down the transfer matrix of this problem we work with the bond variable 
B(i) = (g(i - 1) + H ( i ) ) / 2 ,  which may take L - 1 different values, 1/2,3/2, ..., L - 1/2 .  
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The one-step transfer matrix TRB(i, i + 1) is different for even and odd numbers i of the 
step. Therefore one should consider the two-step transfer matrix defined as 

Tm(i. i + 2) = 

q2 4 5  P2 
9P 4 9{ 

4; 9 4p P2 
P 4P 4 4P 

4P q2 4': P2 
P l  4P 4 PP 

(33) 

The transfer matrix connecting the states in steps i + 1 and i + 3 is the transpose of 
Tm(i, i+Z), so that both have the same eigenvalue spectrum. Writing the leading eigenvalue 
as A i B  ,the correlation length is obtained from the logarithm of Am via equation (12). Since 
the transfer matrix in equation (33) is non-symmetric and non-tridiagonal, its eigenvalue 
problem is solvable analytically only in a few special cases. 

In the limit p -+ 0 the transfer matrix is tridiagonal in linear order of p and can be 
solved by the same eigenvector as T .  of equation (19). The leading eigenvalue is given by 

(34) 

In the symmetric distribution p = 4 = 112 the right eigenvector is given by 

@RB(ZI) = @ ~ ( 2 1 +  1) = sin (35) 

for 1 = 0, 1, ..., L/2  - 1. The corresponding eigenvalue 

ARB 5 COS ("> ( p  =-q = 1/2) 
L + 1  

is the same as for the RFIM with symmetric distribution in equation (I@, which is in accord 
with our previous claim about the equivalence of the two problems. 

Finally, we consider the limit q -+ 0. The eigenvector is then given in leading order 
by 

for I = 1.2, ..., ( L  - 1)/2. The corresponding eigenvalue is 

ARB = 4 ' I L  q << 1. (38) 

Analysing the p-dependence of the correlation length, one can see that it starts with zero 
in the ferromagnetic limit p -+ 1, stays finite for non-zero concentration of ferromagnetic 
bonds and'finally diverges in the antiferromagnetic limit p + 0. 
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5. Discussion 

In this paper the connected correlation function of random king chains is investigated at 
zero temperature. Our study is based on an analysis of the ground-state configurations of 
these systems. Due to frustration, there are spins in the ground state which are ‘loose’, i.e. 
their position is not fixed by the interaction and the external field. These ‘loose’ spins form 
domains, and between two spins in the same domain there are non-vanishing correlations. It 
was shown then that the connected correlation function ~ ( 1 )  is primarily determined by the 
probability of having a DLS of size I in the system. Finally, this probability was calculated 
using an analogy with the survival probability of some random walker on a finite interval. 

Considering different types of random-field and random-bond distributions, we have 
calculated the correlation length using the transfer matrix method. Analysing these results 
one my observe two different types of behaviour in the weak disorder limit. The correlation 
length either vanishes as 5 - 1/ log(l/p) or is divergent as f - l/p. The former behaviour 
is found in the RFM with binary distribution in equation (U), as well as for the RBM in the 
pure ferromagnetic limit q + 0 in equation (38). On the other hand, the correlation length 
is diverging in the diluted RFIM in equations (20) and (28) as p + 0. Similar p-dependence 
is observed in the RBlM in the antiferromagnetic limit, i.e. when p -+ 0 in equation (34). 

The exponential decay of correlations for random king chains is found as a general 
rule. One may find, however, a slower decay of correlations if the strength of randomness 
is smoothly position-dependent. Let us consider a semi-infinite RFIM in which the strength 
of the random field decays as hi - i-s from the surface. Then the equivalent random 
walker has to be considered on an interval the size of which is increasing in time. Using 
results about random walkers [U] and directed polymers [24] inside a parabola, one can say 
that the decay of correlations in this inhomogeneuosly disordered system is of a stretched 
exponential form for 0 < s c 2, whereas it can be described as a power law for s > 2. 
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